Abstract Submitted for the MAR12 Meeting of The American Physical Society

Nature of the low energy excitations in the spin liquid state of $Cs_2CuCl_4^1$ ALTAN ALLAWALA, VESNA MITROVIC, BRAD MARSTON, GEORGIOS KOUTROULAKIS, Brown University, RADU COLDEA, Clarendon Laboratory, University of Oxford — We have performed detailed measurements as a function of temperature and applied magnetic field of the NMR rate in the spin liquid phase of the spin-1/2 frustrated antiferromagnet Cs_2CuCl_4 . Comparison of the magnetization and relaxation rate to the spin-1/2 antiferromagnetic chain α -CuNSal and to variational calculations using Gutzwiller-projected mean-field theory implies that the low energy excitations in Cs_2CuCl_4 are characterized by gapless fermionic excitations in the spin liquid phase at non-zero temperature and applied field. To investigate the ability of one dimensional versus two dimensional models to reproduce the low energy properties of Cs_2CuCl_4 ² we compare the measured T⁻¹ NMR rate to a field theoretical description of a Luttinger liquid³.

¹Supported in part by NSF DMR-0547938 and DMR-0605619 ²M.-A. Vachon *et al.*, New J. Phys. **13** 093029 (2011) ³H. Kühne *et al.*, Phys. Rev. B **83** 100407(R) (2011)

> Altan Allawala Brown University

Date submitted: 10 Nov 2011

Electronic form version 1.4