Probing of polarization reversal and charge conduction in epitaxial (Ga,Fe)$_2$O$_3$ thin films on conducting oxide SrRuO$_3$

R.H. SHIN, S.H. OH, J.H. LEE, W. JO1, Department of Physics, Ewha Womans University, Korea, C. LEFEVRE, A. TOMASSON, F. ROUL-LAND, C. MENY, N. VIART, Institut de Physique et Chimie des Matériaux de Strasbourg, France — Ga$_{2-x}$Fe$_x$O$_3$ (GFO) thin films are the promising room-temperature multiferroics since their magnetic T_C has been reported up to 370 K at $x=1.4$. However, most polarization hysteresis loops of the GFO thin films have been showed lossy behaviors due to the large leakage current. The origin probably lies on charge movement between Fe$^{3+}$ and Fe$^{2+}$ sites which is generated by oxygen vacancy. We report the large reduced leakage current of the GFO thin films by chemical doping to reduce Fe$^{2+}$. The doped GFO thin films were deposited by pulsed laser deposition at 750$^\circ$C for 15 min in oxygen partial pressure of 200 mTorr on SrRuO$_3$/SrTiO$_3$ substrates with various doping concentration. Epitaxy of b-axis orientation in out-of plane was confirmed by x-ray diffraction. The leakage current was reduced up to 5~6 order of magnitude depending on doping concentration. In order to investigate their conduction mechanism, temperature dependent macroscopic I-V curves were measured. Ferroelectric polarization and switching of the films were acquired over a wide range of temperature as well. Scanning probe microscopy has been used to measure local leakage currents as well as polarization reversal as a mode of conductive atomic force microscopy and piezoelectric microscopy, respectively. Local investigation of their electrical properties alludes to ferroelectricity in GFO.

1 a corresponding author

W. Jo
wmjo@ewha.ac.kr

Dept of Physics, Ewha Womans University, Seoul, 120-750, Korea

Date submitted: 16 Dec 2011