Coupling of Orbital and Magnetic Orders to Colossal Negative Thermal Expansion in Novel Mott Insulators1 T.F. Qi, O.B. KORNETA, S. PARKIN, L.E. DE LONG, G. CAO, Center for Advanced Materials, University of Kentucky, P. SCHLOTTMANN, Department of Physics, Florida State University — Ca\textsubscript{2}RuO\textsubscript{4} is intimately associated with both negative volume thermal expansion (NVTE) and negative linear thermal expansion (NLTV) when doped by a 3d transition metal ion M for Ru. The NVTE and NLTE observed in this system constitutes a compelling and extraordinary example in that (1) the coefficient of NVTE and NLTE reaches -213 \times 10^{-6} K-1 and -148 \times 10^{-6} K-1, respectively, constituting colossal negative thermal expansion (NTE); (2) the NTE anomalies closely track the onset temperatures of orbital and magnetic orders, in sharp contrast to classic NTE that shows no relevance to physical properties; (3) the NTE and physical properties can be effectively tuned via varying M and x in Ca\textsubscript{2}Ru\textsubscript{1-x}M\textsubscript{x}O\textsubscript{4}; (4) the NTE occurs near room temperature and extends over a wide temperature interval ranging from 100 K to 350 K. Moreover, NTE and Invar effect commonly exist in these 4d-based ruthenates and 5d-based iridates, e.g. Sr\textsubscript{n+1}Ir\textsubscript{n}O\textsubscript{3n+1} and BaIrO\textsubscript{3}. These novel NTE materials provide a much-needed paradigm for functional materials with anomalous thermal expansion and electronic characteristics.

1This work was supported by NSF through grants DMR-0856234 (GC) and EPS-0814194 (GC, LED), and by DoE through grants DE-FG02-97ER45653 (LED) and DE-FG02-98ER45707 (PS).

T. F. Qi
Center for Advanced Materials, University of Kentucky

Date submitted: 17 Nov 2011
Electronic form version 1.4