Correlated Itinerant Electrons in Pyrochlore Bi$_2$Ir$_2$O$_7$1

G. CAO, O.B. KORNETA, T.F. QI, Department of Physics and Astronomy and Center for Advanced Materials, University of Kentucky, XIANGANG WAN, Department of Physics, Nanjing University, Nanjing, China — Strong spin-orbit coupling in the 5d-based iridates rigorously competes with other relevant energies, and motivates novel insulating states. Therefore, a metallic state does not commonly occur in the iridates, but the unusual balance between different degrees of freedom in the iridates almost guarantee that it will exhibit extraordinary properties when it does occur. Here we report anomalous transport and thermodynamic properties including Hall effect of single-crystal Bi$_2$Ir$_2$O$_7$ along with our electronic structure calculations utilizing a LSDA+U scheme. The results will be discussed along with comparisons drawn with other pyrochlore iridates and related materials.

1This work was supported by NSF through grants DMR-0856234 and EPS-0814194.