Abstract Submitted for the MAR12 Meeting of The American Physical Society

in situ studied correlated oxide LaNiO₃ ultra thin film by angle resolved photoemission spectroscopy H.K. YOO, Seoul National University, Y.J. CHANG, Advanced Light Source (ALS), LBNL & Fritz-Haber-Institut, K.S. KIM, L. MORESCHINI, Advanced Light Source (ALS), LBNL, D.W. JEONG, Y.S. KIM, Seoul National University, A. BOSTWICK, E. ROTENBERG, Advanced Light Source (ALS), LBNL, T.W. NOH, Seoul National University — Recently, $RNiO_3$ (R: rare earth) attracted increasing attention due to the possible realization of the electronic band structure similar to the high-temperature superconductor cuprates. Among them, LaNiO₃ based heterostructures have shown various fascinating physical properties such as dimensionality controlled electronic phase transitions. Theoretical works on confined LaNiO₃ through heterostructuring predicted cuprate-like band structure and magnetic properties. Here, we reports *in-situ* angle resolved photoemission spectroscopy results on the $LaNiO_3$ films grown by pulsed laser deposition method. We carefully controlled the thickness of $LaNiO_3$ films from one to 30 unit cells and measured the thickness dependent band dispersions. First, we will discuss the strong electronic correlation effect in bulk-like band structure of thick LaNiO₃ films comparing to the previously reported LDA+DMFT calculation. Moreover, we will discuss the thickness dependent band structure. As decreasing the film thickness, we observed the charge redistribution of two Ni e_g orbitals at the Fermi surface. The origins of thickness dependent electronic structure will be discussed.

> H. K. Yoo Seoul National University

Date submitted: 17 Nov 2011

Electronic form version 1.4