Abstract Submitted for the MAR12 Meeting of The American Physical Society

 $^{13}\mathbf{C}$

NMR Study of Slow Motions in κ -(**ET**)₂**Cu**[**N**(**CN**)₂]**B**r¹ TAK-KEI LUI, JOSEPH C. GEZO, RUSSELL W. GIANNETTA, CHARLES P. SLICHTER, University of Illinois at Urbana-Champaign, IL 61801, JOHN A. SCHLUETER, Material Sciences Division, Argonne National Laboratory, Argonne, IL 60439 — Like the high- T_C cuprates, the 2D organic superconductor κ -(ET)₂Cu[N(CN)₂]Br ($T_C = 11.9$ K) exhibits a pseudo-gapped phase above the superconducting transition, as indicated by the ¹³C spin-lattice relaxation rate ($1/T_1T$) peak at about 50 K. While ¹³C NMR has been used extensively to probe the pseudogapped regime, T_1 is only sensitive to fast motions in the MHz scale (Larmor frequency), and T_2 remains relatively constant in the pseudogapped regime. Neither T_1 nor T_2 give us any clue about any possible slow motions. We report measurements using the stimulated echo pulse sequence² which is capable of providing more detailed information on possible slow motions in the pseudo-gapped regime.

¹Work at UIUC supported by NSF DMR 10-05708, and Center for Emergent Superconductivity USDOE Award No. DE-AC02-98CH10886, Work at Argonne supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory, DOE Contract No. DE-AC02-06CH11357

²L. R. Becerra, C. A. Klug, C. P. Slichter, and J. H. Sinfelt, J. Phys. Chem. **97**, 12014 (1993).

Tak-Kei Lui University of Illinois at Urbana-Champaign, IL 61801

Date submitted: 17 Nov 2011

Electronic form version 1.4