Abstract Submitted for the MAR12 Meeting of The American Physical Society

Beyond anharmonicity: signature of spin-phonon coupling at the surface of $BaFe_2As_2^1$ CHEN CHEN, JING TENG, YIMIN XIONG, JIANDI ZHANG, RONGYING JIN, E.W. PLUM-MER, Louisiana State University — High Resolution Electron Energy Loss Spectroscopy (HREELS) has been used to investigate the temperature dependence of the lattice dynamics of cleaved single crystals of BaFe₂As₂, one of the parent compounds of Fe-based superconductors. Both the phonon frequency as well as phonon linewidth of the intense 32 meV out-of-plane Fe/As mode (A_{2u}) and the 24 meV out-of-plane As vibration mode (A_{1q}) show a dramatic temperature dependence and anomalous behavior below ~ 150 K. The anomalous behavior is associated with the coupled elasto-magnetic transition in the bulk but occurs appreciably higher at the surface than in the bulk (~ 138 K). The anharmonicity at the surface is considerably larger than that in the bulk for the orthorhombic phase, but is significantly less in the tetragonal phase. A detailed discussion is given in terms of the interplay between the spin and lattice in this novel system.

¹Supported by NSF DMR-1002622

Chen Chen Louisiana State University

Date submitted: 11 Nov 2011

Electronic form version 1.4