Mechanical Behaviour of Light Metal Alloys at High Strain Rates. Computer Simulation on Mesoscale Levels

VLADIMIR SKRIPNYAK, EVGENIYA SKRIPNYAK, Tomsk State University, LOTHAAR W. MEYER, NORMAN HERZIG, Nordmetall GmbH, NATALYA SKRIPNYAK, Tomsk State University, TOMSK STATE UNIVERSITY TEAM, NORDMETALL GBM TEAM — Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.

Vladimir Skripnyak
Tomsk State University

Date submitted: 17 Nov 2011