Abstract Submitted for the MAR12 Meeting of The American Physical Society

Constraint density functional calculations for multiplets in ligand-fields: Applications to Fe-phthalocyanine and Al_2O_3 :Cr³⁺¹ Y. KI-TAOKA, K. NAKAMURA, T. AKIYAMA, T. ITO, Mie University, M. WEINERT, University of Wisconsin-Milwaukee, A.J. FREEMAN, Northwestern University - In transition-metal-based complexes and molecules, multiplet structures are essential in understanding the electronic structure. However, it is often difficult to evaluate a *true* ground state or the *lowest* state within a given ligand (or crystal) symmetry from first principles calculations based on density-functional theory (DFT). Here, we propose a simple DFT approach, implemented into the FLAPW method², to treat multiplets in ligand-fields, by imposing a density matrix constraint on the *d*-orbital occupation numbers. We demonstrate the utility of this approach for the case of an isolated single Fe phthalocyanine (FePc) and a Cr impurity in a corundum Al_2O_3 . For the FePc, results predict that there are three stationary states of ${}^{3}E_{a}$, ${}^{3}B_{2}$, and ${}^{3}A_{2}$ in the Fe²⁺ ion, and our total energy calculations clearly demonstrate that the ground state is ${}^{3}A_{2q}$. In the case of the Al₂O₃:Cr³⁺, where an on-site Coulomb correlation correction (+U) is incorporated, the ground state is ${}^{4}A_{2}$ and the total energy difference between the ground state and the excited state ${}^{4}T_{2}$, 2.9 eV, roughly agrees with an experimental value of 2.23 eV.

¹Work at Northwestern University was supported by the U.S. Department of Energy (DE-FG02-88ER45372).

²Wimmer, Krakauer, Weinert, Freeman, PRB**24**, 864; Weinert, Wimmer, Freeman, PRB**26**, 4571

Y. Kitaoka Mie University

Date submitted: 13 Dec 2011

Electronic form version 1.4