Abstract Submitted for the MAR12 Meeting of The American Physical Society

Vacancy-driven orbital and magnetic order in $(\mathbf{K}, \mathbf{Tl}, \mathbf{Cs})_{y} \mathbf{Fe}_{2-x} \mathbf{Se}_{2}^{1}$ WEICHENG LV, WEI-CHENG LEE, PHILIP PHILLIPS, Department of Physics, University of Illinois — We investigate the effects of the $\sqrt{5} \times \sqrt{5}$ Fe vacancy ordering on the orbital and magnetic order in $(K,Tl,Cs)_{y}Fe_{2-x}Se_{2}$ using a three-orbital (t_{2q}) tightbinding Hamiltonian with generalized Hubbard interactions. We find that vacancy order enhances electron correlations, resulting in the onset of a block antiferromagnetic phase with large moments at smaller interaction strengths. In addition, vacancy ordering modulates the kinetic energy differently for the three t_{2g} orbitals. This results in a breaking of the degeneracy between the d_{xz} and d_{yz} orbitals on each Fe site, and the onset of orbital order. Consequently, we obtain a novel inverse relation between orbital polarization and the magnetic moment. We predict that a transition from high-spin to low-spin states accompanied by a crossover from orbitally-disordered to orbitally-ordered states will be driven by doping the parent compound with electrons, which can be verified by neutron scattering and soft X-ray measurements.

¹support by NSF DMR-0940992 and the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, Grant No. DE-AC0298CH1088

> Weicheng Lv Department of Physics, University of Illinois

Date submitted: 11 Nov 2011

Electronic form version 1.4