Graphene Nanogap for Gate Tunable Quantum Coherent Single Molecule Electronics

TOMAS LOFWANDER, ANDERS BERGVALL, KRISTIAN BERLAND, PER HYLDGAARD, SERGEY KUBATKIN, Dep. of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-412 96 Goteborg, Sweden — We present atomistic calculations\(^1\) of quantum coherent electron transport through fulleropyrrolidine terminated molecules bridging a graphene nanogap. We predict that three difficult problems in molecular electronics with single molecules may be solved by utilizing graphene contacts: (1) a back gate modulating the Fermi level in the graphene leads facilitate control of the device conductance in a transistor effect with high on/off current ratio; (2) the size mismatch between leads and molecule is avoided, in contrast to the traditional metal contacts; (3) as a consequence, distinct features in charge flow patterns throughout the device are directly detectable by scanning techniques. We show that moderate graphene edge disorder is unimportant for the transistor function.