Abstract Submitted for the MAR12 Meeting of The American Physical Society

Emergent Anyons in Exactly Solvable Discrete Models for Topological Phases in Two Dimensions¹ YUTING HU, SPENCER STIRLING², YONG-SHI WU³, Department of Physics and Astronomy, University of Utah — Anyons can emerge as collective excitations in models of topological phases. Exactly solvable discrete models that describe two-dimensional topological phases were proposed by Kitaev, and Levin and Wen respectively. I will present the explicit form of the operators that create and move fluxons (anyonic quasiparticles living at the plaquettes) in the Levin-Wen models. The exchange and exclusion statistics of these fluxons are studied. In particular, I will discuss the topological properties of Fibonacci anyons emerging in a particular Levin-Wen model.

¹YSW is supported in part by US NSF grant PHY-1068558.

²Department of Mathematics, University of Utah

³Key State Laboratory of Surface Physics, and Department of Physics, Fudan University

Yuting Hu Department of Physics and Astronomy, University of Utah

Date submitted: 11 Nov 2011

Electronic form version 1.4