MAR12-2011-004916

Abstract for an Invited Paper for the MAR12 Meeting of the American Physical Society

Spin orbit coupling, electron correlations and exotic magnetism in 5d complex Ir oxides HIDENORI TAKAGI, Department of Physics, University of Tokyo and RIKEN ASI

In 5d Iridium oxides, a large spin-orbit coupling of ~ 0.5 eV, inherent to heavy 5d elements, is not small as compared with the width of d bands and often modifies the landscape of the electronic structure substantially. This is distinct from those of 3d transition metal oxides and gives rise to a variety of novel electronic phases. Layered Ir^{4+} perovskite Sr_2IrO_4 is recently revealed to be a novel $J_{eff}=1/2$ Mott insulator [1,2], where even a moderate Coulomb U can open up a correlation gap because of the large spin-orbit coupling. In the three dimensional analogue of Sr_2IrO_4 , $SrIrO_3$, the large spin-orbit coupling manifests itself in a contrasted way, where the interplay of strong spin-orbit coupling and lattice distortions brings the system almost to a band insulator. $SrIrO_3$ is in fact a very low carrier density semimetal with unusual transport and magnetic properties. If $J_{eff}=1/2 Ir^{4+}$ is placed on a honeycomb lattice or a geometrically frustrated lattice such as pyrochlore lattice, even more exotic states might be anticipated, including a correlated topological insulator [3] and a Kiteav magnet [4]. Our attempt to explore such spin-orbit coupling induced states will be reported.

Work done in collaboration with T. Takayama, B.J.Kim, S.Fujiyama, K.Ohashi, J.Matsuno, H.Osumi and T.Arima.

- [1] B.J.Kim et al., Phys Rev Lett 101, 076402 (2008).
- [2] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009).
- [3] Shitade et al., Phys. Rev. Lett. 102, 256403 (2009).
- [4] J. Chaloupka, G.Jackeli, and G.Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)