Abstract Submitted
for the MAR12 Meeting of
The American Physical Society

Polarized Magnetic Induced Broadening of Plasmon-photonic-is in Fe$_3$O$_4$- Silicone Elastomer Composite Films1 DANHAO MA, DEREK CAPLINGER, DUSTIN HESS, KOFI ADU, Department of Physics, The Pennsylvania State University, Altoona College, Altoona, PA 16601, RICHARD BELL, Department of Chemistry, The Pennsylvania State University, Altoona College, Altoona, PA 16601 — We report systematic studies of polarization dependence of magneto-optical response of Fe$_3$O$_4$-silicone elastomer composite. The Fe$_3$O$_4$ particles were aligned in the elastomer matrix with static magnetic field. The optical response of two composites containing 5wt% and 15wt% of 20nm-30nm diameter Fe$_3$O$_4$ particle aligned in- and out-of-plane were measured with an absorption spectrometer. We observed a systematic redshift in the optical response of the out-of-plane samples with increasing static magnetic field. Furthermore, the observed redshift increases with increasing weight percent of Fe$_3$O$_4$ in the composite; obtaining a maximum shift of \sim 174 nm at 600 Gauss in the 15wt% Fe$_3$O$_4$-elastomer composite films. The observed redshift in the optical response of the out-of-plane composite is attributed to the effect of magnetic field strength and the metal particle/cluster size in the elastomer. However, there were no observable shifts in the in-plane samples, suggesting that the orientation (polarization) of the magnetic dipole and the induced electric dipole play a crucial role in the optical response.

1This Work is Funded by Penn State Altoona Undergraduate Research Grant.