MAR12-2011-005138

Abstract for an Invited Paper for the MAR12 Meeting of the American Physical Society

From above or from below? Determining how graphene layers form on SiC(0001) JAMES HANNON, IBM Research Division

SiC decomposes when heated above 1200 C in vacuum. Silicon desorbs, while the carbon left behind can coalesce to form graphene. Growth of graphene on the SiC(0001) surface ("Si face") and the SiC(000-1) ("C face") is very different. On the Si face, graphene growth is epitaxial, while on the C face the growth is generally much less ordered. On the Si face, the observed epitaxy suggests that new graphene layers form under existing one, that is, at the SiC/graphene interface. The lack of epitaxy on the C face suggests that the growth mode on this surface might be different. To test this, we grew ultra-thin epitaxial SiC films (1 nm) on both SiC(0001) and SiC(000-1) via CVD using isotopically pure carbon-13. We then formed graphene via high-temperature thermal decomposition. We used medium energy ion scattering to determine where the carbon-13 was located within the graphene film. For both the Si face and C-face, we find that the carbon-13 is located predominantly in the outmost graphene layer, confirming that graphene grows "from the inside out" on both surfaces [1]. This work was performed in collaboration with Matt Copel and Ruud Tromp.

[1] Phys. Rev. Lett. 107, 166101 (2011)