Abstract Submitted for the MAR12 Meeting of The American Physical Society

EPR spectral study and modeling of lithium borovanadate RLi₂OB₂O₃KV₂O₅ glasses¹ BRANDON POLLPETER, BLANE BAKER, BIKESH DAHAL, William Jewell College, STEVE FELLER, Coe College — Utilizing electron paramagnetic resonance EPR spectroscopy, lithium borovanadate $RLi_2OB_2O_3KV_2O_5$ glasses with R = 0.4 and K ranging from 0.1 to 0.5 were analyzed in order to elucidate the environment of unpaired $3d^1$ electrons. Transitions associated with coupling of such electrons to vanadium nuclear spins were identified and modeled to reveal both g factor and A factor values. For a system with K = 0.3, representative data include: $g_{ll} = 1.9242, g_{\perp} = 1.9693, A_{ll} = 184.3768$ cm^{-1} , $A_{\perp} = 64.6568 cm^{-1}$, $\Delta g_{ll} = 0.0781$, $\Delta g_{\perp} = 0.0330$, and $\Delta g_{ll} / \Delta g_{\perp} = 2.3670$. A comparison revealing $g_{ll} < g_{\perp} < g_e$ is indicative of localized electrons residing in tetragonally-distorted octahedral sites. A slight increase observed in $\Delta g_{ll}/\Delta g_{\perp}$ values when K = 0.1 to K = 0.3 is further evidence of a possible elongation of the octahedral site associated with increasing K values. This pattern, however, is not present in systems with K values greater than 0.3, suggesting that perhaps no further elongation of the site is possible due to bond constraints. A comprehensive model will be presented to summarize data for the entire family of lithium borovanadates studied here.

¹This work was supported in part by NSF-DMR 0904615.

Blane Baker William Jewell College

Date submitted: 11 Nov 2011

Electronic form version 1.4