Magnetostatics and magnetodynamics in single crystal Ni on MgO

MICHAEL PECHAN, BRIAN KASTER, MICHAEL SINKO, Department of Physics, Miami University, DAN DAHLBERG, Department of Physics and Astronomy, University of Minnesota, C.A. ROSS, GYE HYUN KIM, CARL V. THOMPSON, Department of Materials Science and Engineering, Massachusetts Institute of Technology — We present an investigation of the magnetic properties of 120 nm thick (100) and (110) oriented single crystal Ni films grown on MgO via evaporative deposition. X-ray diffraction analysis was used to confirm the single crystal nature and crystallographic orientations of the films. Magnetization measurements reveal anisotropy and magnetic moment consistent with bulk Ni values. Ferromagnetic resonance measurements have been made as a function of in-plane angle and temperature at 36 GHz. Resonance field maps confirm the anisotropy expected for high quality single crystal films. Both the anisotropy and damping are presented at temperatures ranging from 50 K to room temperature. Additional FMR results at 10 GHz are also presented from 4 K to room temperature. These results are discussed in the context of the temperature-dependent magnetocrystalline anisotropy of Ni and magnetoelastic anisotropy resulting from thermal mismatch between the Ni and MgO.

1U.S. Dept. of Energy (MU), U.S. National Science Foundation MRSEC Program (MN) and U.S. National Science Foundation (MIT)