Abstract Submitted for the MAR12 Meeting of The American Physical Society

Magnetoelastic Spin Flip in La_{1.4}Sr_{1.6}Mn₂O₇ K.-T. KO, H. JANG, J.-H. PARK, Dept. Physics, Pohang University of Science and Technology, Korea, B.-G. PARK, J.-Y. KIM, Pohang Accelerator Laboratory, SUNG BAEK KIM, The College of General Education, Konyang University, Korea, S-W. CHEONG, Dept. Physics and Astronomy, Rutgers University, USA — The magnetoelastic coupling in a bilayer manganite was investigated by using x-ray absorption spectroscopy (XAS) and resonant soft x-ray scattering (RSXS) at Mn $L_{2,3}$ edge. Huge occupation reversal of e_g level from $d_{3z^2-r^2}$ to $d_{x^2-y^2}$ was observed at the temperature and magnetic field induced phase transition in La_{1.4}Sr_{1.6}Mn₂O₇. The CI model calculation indicated that the direction of magnetocrystalline anisotropy is affected by the configuration of e_q level, and the sharp spin flip transition was expected. The field dependent RSXS measurements demonstrated a strong magnetoelastic coupling in La_{1.4}Sr_{1.6}Mn₂O₇, where the AFM spin axis was changed from out-of-plane to in-plane as a result of the field induced change of e_q orbital occupation. Finally, we discuss the spin-orbital-lattice coupling in bilayer manganites.

> Kyung-Tae Ko Dept. Physics, Pohang University of Science and Technology, Korea

Date submitted: 11 Nov 2011 Electronic form version 1.4