First-principles study on metal-TaO$_x$-metal heterostructures: response to applied bias voltages1 SATOSHI WATANABE, TAKUYA MATSUMOTO, ARIIHIRO TAWARA, Dept. of Materials Engineering, The Univ. of Tokyo, TINGKUN GU, School of Electrical Engineering, Shandong Univ., TOMOFUMI TADA, Dept. of Materials Engineering, The Univ. of Tokyo — Metal-TaO$_x$-metal heterostructures are promising as a novel nonvolatile memory device [1]. The formation of conduction paths in the TaO$_x$ layer is responsible for the low resistance state and the switching mechanism is understood as the electrochemical redox reaction involved with the bias-voltage application. However, microscopic details of the conduction path and switching mechanism have not been clarified yet. We examine electronic states, and electron and ion transport in Cu-TaO$_x$ (x \sim 2.5)-Pt(or Cu) heterostructures from first principles, focusing on the response to applied bias voltages. We show that Cu interstitials in crystalline Ta$_2$O$_5$ enhances electronic conduction considerably [2], while does not in amorphous one. We also show that the potential change due to the bias application is sensitive to the structure of TaO$_x$ layer and/or metal-TaO$_x$ interface: in some case, the potential change may be very small near the Cu/TaO$_x$ interface in the TaO$_x$ layer so that the bias application hardly change the mobility of Cu ions in this region. These results will be discussed in terms of electronic states. [1] T. Sakamoto et al., APL 91 (2007) 092110; [2] T. K. Gu et al., ACS Nano 4 (2010) 6477.

1This work was supported by CREST-JST, Low Power Electronics Association and Projects, and Grants-in-Aid by MEXT-Japan.