Orbital fluctuation mediated superconductivity and structure transition in iron-based superconductors
HIROSHI KONTANI, Nagoya University — The main features in Fe-based superconductors are summarized as (i) orthorhombic transition accompanied by remarkable softening of the shear modulus C_{66}, (ii) high-T_c superconductivity close to the orthorhombic phase, and (iii) stripe-type magnetic order induced by orthorhombicity. To understand them, we analyze the multiorbital Hubbard-Holstein model with Fe-ion optical phonons. In the random-phase-approximation (RPA), a small electron-phonon coupling constant ($\lambda \sim 0.2$) is enough to produce large orbital (=charge quadrupole) fluctuations. The most divergent susceptibility is the O_{xz}-antiferro-quadrupole (AFQ) susceptibility, which causes the s-wave superconductivity without sign reversal (s^{++}-wave state). 1 The s^{++}-wave state is robust against impurities, 2 consistently with experimental observations. At the same time, divergent development of $O_{x^2-y^2}$-ferro-quadrupole (FQ) susceptibility is brought by the “two-orbiton process” with respect to the AFQ fluctuations.

Hiroshi Kontani
Nagoya University

Date submitted: 27 Nov 2011

Electronic form version 1.4