Structural properties and phase stability of Ti alloys containing V and Cr by first-principles calculation LINGGANG ZHU, BENGT TEGNER, GRAEME ACKLAND, SUPA, School of Physics and Astronomy, The University of Edinburgh, QING-MIAO HU, RUI YANG, Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China — We apply the first-principles plane-wave pseudopotential method and virtual crystal approximation (VCA), to investigate structural properties and phase stability of ternary titanium alloy Ti-V-Cr. The lattice parameters of the alloy vary almost linearly with the number of d electrons in spite of the different ratio of V to Cr, which agrees with the available experimental results. At 0K, we find that an extra 0.4 electrons per atom can stabilise the beta Ti-V-Cr. Debye approximation is used to consider the temperature effect, and it is found that at 973K, with an extra 0.1 d electron per atom, the beta Ti-V-Cr can be stabilised, compared with 0.15-0.20 d electron required experimentally at 973K. It is shown that V and Cr move the Fermi energy to lower values of the density of the states of the beta phase, which accounts for the stabilisation effect.

Linggang Zhu
SUPA, School of Physics and Astronomy, The University of Edinburgh

Date submitted: 11 Nov 2011
Electronic form version 1.4