Abstract Submitted for the MAR12 Meeting of The American Physical Society

Anomalous magnetic anisotropy in Mn₃O₄ investigated by ⁵⁵Mn²⁺ and ⁵⁵Mn³⁺ Nuclear magnetic resonance CHANGSOO KIM, JEONG HYUN SHIM¹, EUNA JO, SOONCHIL LEE, Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea — Mn₃O₄ has Yafet-Kittel type spin structure below Neel Temperature (41K). The magnetization along the c-axis is smaller than that along the ab-plane even in external magnetic field of 30 Tesla, implying huge magnetic anisotropy in the ab-plane. We measured ⁵⁵Mn²⁺ and ⁵⁵Mn³⁺ Nuclear Magnetic Resonance (NMR) of a Mn₃O₄ single crystal in external magnetic field. The canting angles of Mn²⁺ and Mn³⁺ magnetic moments were calculated from the spectral shift obtained for various magnetic field directions between the a, b and c-axes. With the canting angle data, we estimated the anisotropy energies of the Mn²⁺ and Mn³⁺ magnetic moments and the exchange energy between them. The result also shows that Mn³⁺ spins in the Yafet-Kittel structure lie in the ab-plane contrary to the previous reports.

¹Current address: Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

Changsoo Kim
Department of Physics, Korea Advanced Institute of
Science and Technology, Daejeon 305-701, Korea

Date submitted: 18 Nov 2011 Electronic form version 1.4