Large exchange anisotropy in nanostructured Cu$_{30}$Mn$_{70}$ ribbons1

J. MARION, F. JIMÉNEZ-VILLACORTA, L.H. LEWIS, Northeastern University Department of Chemical Engineering — Exchange bias (H_{ex}), arising from coupling between antiferromagnetic (AFM) and ferromagnetic (FM) materials, is a diagnostic metric of magnetic interactions in inhomogeneous systems. An extremely large H_{ex} of 10 kOe is found in the rapidly-solidified alloy Cu$_{30}$Mn$_{70}$ at 10 K [1-2], but disappears at temperatures above the system blocking temperature of 123 K. X-ray diffraction reveals the presence of two well-crystallized FCC γ-phases with cubic a-parameters 3.744 and 3.750 Å, unit cell volumes of 52.5 and 52.7 Å3, respectively, and a crystallite size of \sim30 nm. We hypothesize that the γ-phase with larger a-parameter is Mn-rich while the other is Mn-poor. The observed magnetic behavior is attributed to exchange interactions between Mn-rich regions where AFM coupling between nearest-neighbor Mn atoms dominates, and Mn-poor regions where FM coupling between next-nearest-neighbors dominates [1]. Compositional fluctuations result in an additional cluster-glass-like freezing behavior due to magnetically frustrated interactions between Mn atoms [2].

1This research was conducted under ONR grant # N000141010533. The author would also like to acknowledge Drs. Matthew Willard and Maria Daniil at NRL.

Joshua Marion
Northeastern University Department of Chemical Engineering

Date submitted: 18 Nov 2011

Electronic form version 1.4