Genetic engineering of band-edge optical absorption in Si/Ge superlattices

MAYEUL D’AVEZAC, JUN-WEI LUO, NREL, THOMAS CHANIER, University of Iowa, ALEX ZUNGER, University of Colorado — Integrating optoelectronic functionalities directly into the mature Silicon-Germanium technology base would prove invaluable for many applications. Unfortunately, both Si and Ge display indirect band-gaps unsuitable for optical applications. It was previously shown (Zachai et al. PRL 64 (1990)) that epitaxially grown [(Si)$_n$(Ge)$_m$]$_p$ (i.e. a single repeat unit) grown on Si can form direct-gap heterostructures with weak optical transitions as a result of zone folding and quantum confinement. The much richer space of multiple-period superlattices [(Si)$_{n_1}$(Ge)$_{n_2}$(Si)$_{n_3}$(Ge)$_{n_4}$…Ge$_{n_N}$]$_p$ has not been considered. If $M = \sum n_i$ is the total number of monolayers, then there are, roughly, 2^M different possible superlattices. To explore this large space, we combine a (i) genetic algorithm for effective configurational search with (ii) empirical pseudopotential designed to accurately reproduce the inter-valley and spin-orbit splittings, as well as hydrostatic and biaxial strains. We will present multiple-period SiGe superlattices with large electric dipole moments and direct gaps at Γ yielded by this search. We show this pattern is robust against known difficulties during experimental synthesis.

1This work is supported through the Center for Inverse Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.