Abstract Submitted for the MAR12 Meeting of The American Physical Society

Measurement of penetration depth of MgB₂ using DC SQUID DANIEL CUNNANE, KE CHEN, X.X. XI, Temple University — Penetration depth is an important parameter for the design of Rapid Single Flux Quantum (RSFQ) circuits. For MgB₂, different values from 40 nm to 150 nm have been reported by different groups. We have measured the penetration depth of MgB₂ using MgB₂ DC SQUIDs. The SQUID was made using MgB₂/MgO/MgB₂ Josephson junctions with epitaxial MgB₂ electrodes deposited via Hybrid Physical-Chemical Vapor Deposition. The MgO was deposited by RF Magnetron Sputtering of an MgO target. The device shows good voltage modulation above 150 μ V. The working temperature for these SQUIDs ranges from below 10K to 37K, with the optimum voltage modulation near 35K. The results will be discussed in comparison to the penetration depth reported by other measurement techniques.

Daniel Cunnane Temple University

Date submitted: 11 Nov 2011 Electronic form version 1.4