Abstract Submitted for the MAR12 Meeting of The American Physical Society

Sorting Category: 09.1.1 (E)

Phononic, magnetic, and inter-band Raman scattering in $\mathbf{K}_{0.75}\mathbf{Fe}_{1.75}\mathbf{Se}_2$ superconductor¹ ALEXANDER IGNATOV, PHIL LUBIK, Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA, R.H. YUAN, W.T. GUO, NAN-LIN WANG, Beijing Natl Lab for Condensed Matter Physics, CAS, Beijing 100190, China, GIRSH BLUMBERG, Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA — We have analyzed collective excitations in $K_{0.75}Fe_{1.75}Se_2$ single crystal ($T_c \sim 32$ K) by polarized Raman scattering in the energy shift range of 20-8000 $\rm cm^{-1}$, the temperature range of 10-300 K, and laser excitation energies from 1.8 to 3.0 eV. Seven B_g and nine A_g phonon modes are observed at 300K. Below ~150 K an extra A_q mode appears at 165 cm⁻¹. The amplitudes of the A_q modes at ~67, 112, and 124 cm⁻¹ are reduced, while the amplitude of 183 cm⁻¹ A_g mode is enhanced by factor of five as temperature decreases from 300 to 40 K. Magnetic scattering bands at 1000-2000 $\rm cm^{-1}$ consist of at least three distinct peaks each, implying different Fe-Fe AFM exchange coupling constants for underlying structure. Inter-band transitions are observed at ${\sim}3700$ and 4600 ${\rm cm}^{-1}$ at 300 K in the A_g and B_g channels, respectively. Below 140 K these excitations are hardened to ~ 4040 and 4820 cm⁻¹.

¹Research at Rutgers was supported by the U.S. DOE, office of BES, Division of Materials Science and Engineering under award DE-SC0005463.

X

Prefer Oral Session Prefer Poster Session Alexander Ignatov aignatov@physics.rutgers.edu Deptof Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA

Date submitted: 23 Jan 2012

Electronic form version 1.4