Measuring Quantum Optomechanical Self-induced Oscillations: Photon Correlation and Homodyne Tomography1 JIANG QIAN, School of Engineering, Case Western Reserve University, FLORIAN MARQUARDT, Department of Physics, FAU Erlangen-Nuremberg, AASHISH CLERK, Department of Physics, McGill University, KLEMENS HAMMERER, Institute for Theoretical Physics, University of Hannover — Motivated by recent experimental advances in fabricating systems with large optomechanical couplings, we study the self-induced mechanical oscillations in the strong quantum regime for a single cell optomechanical system. We show that, under strong optomechanical coupling $g_M \geq \kappa$, the persistent state of the mechanical oscillator can have non-classical, strongly negative Wigner density, which can be measured by non-destructive homodyne tomography. We further propose to detect the onset of the quantum self-induced oscillation using the easier-to-measure photon two-point correlation functions $g^{(2)}(t)$. We show that there are two distinct signatures in the long-term time-average and the line-shape of $g^{(2)}(t)$ at the onset of self-induced oscillations. We show that $g^{(2)}(t)$ exhibits long-term coherence extending much beyond the optical decay time $1/\kappa$, the decay of which in the red- and blue-detune regime we explain using models of optomechanical cooling and phase noise.

1J.Q. acknowledge the support of LRZ and Anold Sommerfeld center for Theoretical Physics for the duration of this work, and the support of NIM and DFG through SFB631