Abstract Submitted for the MAR12 Meeting of The American Physical Society

Absence of ferroelectricity in hexagonal InMnO₃ MAR-TIN LILIENBLUM, YU KUMAGAI, Department of Materials, ETH Zurich, ALEXEI A. BELIK, International Center for Materials Nanoarchitectonics, NIMS, NAEMI LEO, NICOLA A. SPALDIN, MANFRED FIEBIG, Department of Materials, ETH Zurich — So far, it was believed that hexagonal (h-) InMnO₃ exhibit the same type of multiferroic order as the other compounds from the h-RMnO₃ family (R = Sc, Y, Dy - Lu), including, in particular, a unit-cell-tripling improper ferroelectric order. Here we present experimental evidence for the *absence* of ferroelectricity in hexagonal InMnO₃ based on three different techniques: x-ray diffraction (XRD), piezoresponse force microscopy (PFM) and optical second harmonic generation (SHG). XRD data are ambiguous because they can be described likewise by the non-ferroelectric $P\overline{3}c$ structure and by the ferroelectric $P6_3cm$ structure present in the other h-RMnO₃ compounds. However, PFM at room temperature and SHG measurements at low temperature uniquely reveal the absence of ferroelectric order in InMnO₃. We therefore propose that InMnO₃ exhibits antiferrodistortive, but non-ferroelectric order according to the $P\overline{3}c$ symmetry. Density functional calculations show that the relative energy between the $P\overline{3}c$ and $P6_3cm$ structures is determined by a competition between electrostatic and covalency effects, with an *absence* of covalency favoring the ferroelectric structure.

> Martin Lilienblum Department of Materials, ETH Zurich

Date submitted: 08 Dec 2011

Electronic form version 1.4