Magnetic and charge carriers properties of metamagnetic Fe$_3$Ga$_4$

JOSHUA MENDEZ1, YAN WU2, BRADFORD FULFER3, JULIA CHAN4, JOHN DITUSA5, Louisiana State University — Single crystals of Fe$_3$Ga$_4$ were grown via an iodine vapor transport method. Previous investigations of arc-melted polycrystalline samples identify metallic conduction with a magnetic phase transition at 400 K and interesting temperature-dependent metamagnetic behavior. The single crystal samples allow a much fuller exploration of the magnetic properties and have yielded some interesting differences with the previous data. This includes a sharp reduction of the magnetization within the magnetically ordered phase associated with a sharp onset of the metamagnetic behavior in the field dependence near room temperature. A previously identified second phase transition occurs below 50 K where the metamagnetic behavior is replaced by a ferromagnetic magnetization with little hysteresis. We find substantial anisotropy in the magnetization which is particularly apparent between 50 and 300 K. Charge transport experiments are underway to explore the magnetoresistance and Hall effect of this magnet.

1Department of Physics & Astronomy, Baton Rouge, LA 70803-4001
2Department of Physics & Astronomy, Baton Rouge, LA 70803-4001
3Department of Chemistry, Baton Rouge, LA 70803-4001
4Department of Chemistry, Baton Rouge, LA 70803-4001
5Department of Physics & Astronomy, Baton Rouge, LA 70803-4001

Joshua Mendez
Louisiana State University

Date submitted: 19 Nov 2011