Collective modes in three-band superconductors with repulsive interband interactions1 VALENTIN STANEV, Materials Science Division, Argonne National Laboratory — I consider a simple model of a three-band superconductor with repulsive interband interactions. In such a system frustration associated with the odd number of gaps leads to the possible existence of intrinsically complex time-reversal symmetry breaking (TRSB) order parameter. I show that in this state the fluctuations of the \textit{different} gaps are strongly coupled and this leads to the development of novel excitations, which mix the phase and amplitude oscillations. This is due to the non-trivial relative phase angle between the gaps. The energy of these excitations is less than 2Δ and thus they are true collective modes of the system.

1This work is supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, Grant No. DE-AC0298CH1088.