Homogeneous Dislocation Nucleation

ASAD HASAN, CRAIG MALONEY, Carnegie Mellon University — We perform atomistic computer simulations to study the mechanism of homogeneous dislocation nucleation (HDN) in a 2D hexagonal crystalline film under circular indentation. The nucleation process is governed by vanishing of energy associated with a single normal mode. For fixed film thickness, \(L \), the spatial extent, \(\xi \), of the critical mode grows with indenter radius, \(R \). For fixed \(R/L \), \(\xi \) scales roughly as \(\xi \sim L^{0.4} \). We perform a mesoscale analysis to determine the lowest energy normal mode for regions of varying radius, \(r_{\text{meso}} \), centered on the critical mode’s core. The energy of the lowest normal mode \(\lambda_{\text{meso}} \rightarrow 0 \) rapidly as \(r_{\text{meso}} \rightarrow \xi \). The lowest mode shows a spatial extent, \(\xi_{\text{meso}} \), which increases sublinearly for \(r_{\text{meso}} \leq \xi \) and saturates at \(r_{\text{meso}} \approx 1.5 \xi \). We demonstrate that the \(\xi_{\text{meso}}/\xi \) versus \(r_{\text{meso}}/\xi \) curve is universal (independent of \(L \) or \(R \)). Hence small regions, \(r_{\text{meso}} \leq \xi \), can reveal the presence of incipient instability but give excellent estimates for the critical mode’s energy and spatial extent only for \(r_{\text{meso}} \geq 1.5 \xi \). Thus HDN is a quasi-local phenomenon.