Precise control of vortex chirality and polarity in “Pac-Man”-like magnetic nanodots by in-plane magnetic field

VLADIMIR CAMBEL, JAROSLAV TÓBIK, Institute of Electrical Engineering, Slovak Academy of Sciences, Slovakia, GORAN KARAPETROV, Department of Physics, Drexel University and Institute of Electrical Engineering, Slovak Academy of Sciences — Here we explore size-dependent magnetic states of sub-100 nm Permalloy nanomagnets of specific geometry. The geometry is suitable for independent setting and readout of vortex polarity and chirality by applying in-plane magnetic fields only. Micromagnetic calculations show that in “Pac-Man”-like magnetic nanodots the relaxation channels to specific chirality and polarity states from uniform magnetization state are deterministic and are not influenced by the presence of moderate out-of-plane fields. The particular geometry opens straight channel for magnetization relaxation towards stable closure-domain vortex state with specific chirality and polarity. We explore a wide geometrical phase space in search for stable and predictable remanent vortex configurations. We find that in these nanomagnets the write process is simple and the signal is easily readable.

1 This publication is the result of the following project implementations: Development of the Centre of Excellence for New Technologies in Electrical Engineering - 2nd, ITMS code 26240120019, supported by the R & D Operational Program funded by ERDF.

Goran Karapetrov
Department of Physics, Drexel University

Date submitted: 19 Nov 2011

Electronic form version 1.4