Abstract Submitted for the MAR12 Meeting of The American Physical Society

Proximity effect of iron-based superconductor in conventional s-wave superconducting thin films NICK GROLL, THOMAS PROSLIER, ALEX KOSHELEV, VALENTIN STANTEV, DUCK-YOUNG CHUNG, Argonne National Laboratory — The proximity effect has been proposed as a mechanism to unambiguously identify the possible s_{\pm} -state in iron-based superconductors.¹ With a thin s-wave superconductor at op a $s_\pm\text{-superconductor}$ it is suggested that the s-wave order parameter will couple to the s_{\pm} -gaps differently, inducing a correction to the s-wave density of states that can be probed using electron tunneling spectroscopy. In this talk, we will present recent results of the superconducting proximity effect in s-wave MoGe thin films sputtered on top of bulk superconducting $Ba_{0.6}K_{0.4}Fe_2As_2$ ($T_c=35K$) pnictide. Electron tunneling spectroscopy measurements were performed for several MoGe film thicknesses using a homemade point contact setup. Finally, results will also be presented for similar measurements using two conventional s-wave superconductors.

¹A. E. Koshelev, V. Stanev, Europhysics Letters, Vol. 96, 27014 (2011)

Nick Groll Argonne National Laboratory

Date submitted: 28 Nov 2011 Electronic form version 1.4