Abstract Submitted for the MAR12 Meeting of The American Physical Society

Velcro $(\hat{\Gamma})$ as a Mesoscopic Model System for Stick-Slip Motion¹ LISA MARIANI, CARA ESPOSITO, PIOTR HABDAS, PAUL ANGIOLILLO, Saint Joseph's University — The Amontons-Coulomb (AC) laws of friction, established during the 18th Century, serve to explain many of the phenomenological observations of friction in the macroscopic world. The AC laws for friction do not adequately explain certain systems, which undergo stick-slip motion, however. The hook-and-loop system (Velcro), in particular, exhibits easily observed stick-slip motion. Velcro evinces clear evidence of stick-slip dynamics that is independent of sliding velocity in accordance with Coulomb but, the maximum static friction force F_s^{max} and kinetic friction F_k are keenly dependent on "area of contact" (hook number) in contrast to accepted law, but consistent with recent studies of frictional dynamics in nanoscopic systems. Both the F_s^{\max} and F_k as a function of area follow power law dependences with an exponent of approximately 2/3. Moreover, the fluctuations of the kinetic friction F_k also follow a power law dependence with an exponent of approximately 1/2 in accordance with random walk theory. On the other hand, the F_s^{max} and F_k both follow a linear dependence with applied load in accordance with the classical theory of AC.

¹Howard Hughes Medical Institute, Sigma Xi, McNulty Foundation

Paul Angiolillo Saint Joseph's University

Date submitted: 11 Nov 2011

Electronic form version 1.4