Abstract Submitted for the MAR12 Meeting of The American Physical Society

Single crystal growth and physical properties of SrCu₂As₂, $SrCu_2Sb_2$ and $BaCu_2Sb_2^1$ V.K. ANAND, P.K. PERERA, A. PANDEY, R.J. GOETSCH, A. KREYSSIG, D.C. JOHNSTON, Ames Laboratory and Dept. Phys. Astron., Iowa State Univ., Ames, IA 50011 — We present the physical properties of self-flux-grown single crystals of SrCu₂As₂, SrCu₂Sb₂, SrCu₂(As_{0.84}Sb_{0.16})₂ and BaCu₂Sb₂ investigated by magnetic susceptibility χ , specific heat $C_{\rm p}$ and electrical resistivity ρ vs. temperature T measurements. Contrasting structures occur for SrCu₂As₂ (ThCr₂Si₂-type), SrCu₂Sb₂ (CaBe₂Ge₂-type) and BaCu₂Sb₂ (a distorted intergrowth of ThCr₂Si₂-type and CaBe₂Ge₂-type unit cells). The $\chi(T)$ data for all these compounds exhibit weakly anisotropic diamagnetic behaviors. For $1.8 \leq T \leq 300$ K, the $\rho(T)$ data show metallic character and are well-described by the Bloch-Grüneisen model, and the $C_{\rm p}(T)$ data are well-fitted by metallic γT plus Debye lattice contributions. From the low- $T C_p(T)$ data, we infer Sommerfeld coefficients $\gamma = 2.2-3.9 \text{ mJ/mol K}^2$ and Debye temperatures $\Theta_{\rm D} = 204-246 \text{ K}$. The electronic properties indicate that these compounds are sp metals containing Cu in a nonmagnetic $3d^{10}$ electronic configuration.²

¹Research at Ames Laboratory was supported by the USDOE-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
²D. J. Singh, Phys. Rev. B **79**, 153102 (2009).

V. K. Anand Ames Laboratory and Dept. Phys. Astron., Iowa State Univ., Ames, IA 50011

Date submitted: 28 Nov 2011

Electronic form version 1.4