Assembling Colloidal Clusters from Spherical Codes

CAROLYN PHILLIPS, ERIC JANKOWSKI, MICHELLE MARVAL, SHARON GLOTZER, University of Michigan — Anisotropic building blocks assembled from colloidal particles are attractive building blocks for self-assembled materials because their complex interactions can be exploited to drive self-assembly. In this work we consider the thermodynamically driven self-assembly of terminal clusters of particles. We predict that clusters related to spherical codes, a mathematical sequence of points, can be synthesized via self-assembly. These anisotropic clusters, which derive from packing solutions of spheres around a sphere, can be tuned to different anisotropies via the ratio of sphere diameters and temperature. Structural and dynamical analysis of these tiny systems reveal rich and sometimes surprising properties.

1Supported by DOE-BES, under award DE-FG02-02ER46000