Abstract Submitted
for the MAR12 Meeting of
The American Physical Society

Fluctuations of one-dimensional interface in the directed polymer formulation: role of a finite interface width

ELISABETH AGORITSAS, DPMC-MaNEP, University of Geneva (Switzerland), VIVIEN LECOMTE, Laboratoire Probabilite et Modeles Aleatoires, Universities Paris VI and Paris VII (France), THIERRY GIAMARCHI, DPMC-MaNEP, University of Geneva (Switzerland) — An elastic interface living in a disordered medium always exhibits geometrical fluctuations, characterized in particular by the distribution of its relative displacements as a function of the lengthscale r, whose variance defines the interface roughness $B(r)$. Those fluctuations are the manifestation of the probability and associated effective free-energy of the different configurations of the interface, in presence of disorder and at finite temperature. Focusing specifically on the one-dimensional interface, we use the exact mapping of the static interface on the directed polymer in random medium in order to explore both analytically and numerically the role of a finite interface width $\xi > 0$, assuming a short-range elasticity and a random-bond quenched disorder. Confirming the existence of a low-temperature regime where the finite microscopic width plays a crucial role, as predicted by previous Gaussian-Variational-Method predictions [Phys.Rev.B 82, 184207 (2010)], we propose a coherent picture of the physics at stake, compatible both with numerical computations and generic scaling arguments.

1This work was supported in part by the Swiss SNF under MaNEP and Division II.

Elisabeth Agoritsas
DPMC-MaNEP, University of Geneva (Switzerland)