Abstract Submitted for the MAR12 Meeting of The American Physical Society

Temperature-enhanced nearly critical magnetic scattering in nearly superconducting $FeTe_{0.87}S_{0.13}^{-1}$ IGOR ZAL-IZNYAK, CEDOMIR PETROVIC, RONGWEI HU, Brookhaven National Laboratory, ANDREI SAVICI, KAROL MARTY, MARK LUMS-DEN, Oak Ridge National Laboratory — Recent neutron scattering measurements [1] have revealed an unusual temperature-induced enhancement of dynamical magnetism in iron telluride, FeTe, the parent material of the chalcogenide family of iron-based superconductors. Here we report a study of magnetic excitations in the sulfur-doped $FeTe_{0.87}S_{0.13}$, where bulk measurements show presence of the filamentary superconductivity [2]. Our neutron measurements probe the bulk of the material, which is nearly critical (filamentary superconductivity emerges in a small volume fraction of the sample, which is supercritical). We observe a peculiar pattern of low-energy magnetic scattering, characteristic of critical magnetic fluctuations, and find that it is also anomalously enhanced with the increasing temperature up to ~ 100 K.

I. A. Zaliznyak, et. al., Z. J. Xu, J. M. Tranquada, G. D. Gu, A. M. Tsvelik, M. B. Stone, Phys. Rev. Lett., in press (2011).
Rongwei Hu, E. S. Bozin, J. B. Warren, C. Petrovic, Phys. Rev. B 80, 214514 (2009).

¹We acknowledge useful discussions with J. Tranquada. This work was supported by the US DOE under Contract DE-AC02-98CH10886.

Igor Zaliznyak Brookhaven National Laboratory

Date submitted: 20 Nov 2011

Electronic form version 1.4