Abstract Submitted for the MAR12 Meeting of The American Physical Society

Effect of Mg^{2+} on the structure of amorphous $CaCO_3$ - A molecular dynamics simulation HIDEKAZU TOMONO, HI-ROKI NADA, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, JAPAN — Molecular dynamics (MD) simulations of amorphous calcium carbonate (ACC) were carried out to investigate the effect of Mg^{2+} ions on the structure of CaCO₃ crystal nucleus formed from ACC. Our systems contained 432 CaCO_3 with several concentrations of MgCO₃. In this study, our original ion model of Mg^{2+} was developed and combined with Raiteri model of Ca^{2+} and rigid $\rm CO_3^{2-}$ [1]. The simulations indicated that the fraction of vaterite-like ion arrangement was much larger than those of calcite-like and aragonitelike ion arrangements in pure ACC. However, as the Mg^{2+} concentration increased, the faction of vaterite-like ion arrangements decreased, which suggests that Mg^{2+} ions play as inhibitors of vaterite nucleation. The result explains why calcite or aragonite is preferentially nucleated in the presence of Mg^{2+} , whereas vaterite is nucleated in the absence of them.[1] P. Raiteri, J. D. Gale, D. Quigley, and P. M. Rodger, J. Phys. Chem. C 114, 5997 (2010).

> Hidekazu Tomono National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, JAPAN

Date submitted: 28 Nov 2011

Electronic form version 1.4