Abstract Submitted for the MAR12 Meeting of The American Physical Society

Crystal growth and detailed structural characterization of superconducting and non-superconducting phases in the $\mathbf{K}_{1-x}\mathbf{Fe}_{2-y}\mathbf{Se}_2$ system DANIEL SHOEMAKER, DUCK YOUNG CHUNG, MELANIE FRANCISCO, HELMUT CLAUS, SEVDA AVCI, Argonne National Laboratory, ANNA LLOBET, Lujan Neutron Scattering Center, Los Alamos National Laboratory, HEFEI HU, JIAN-MIN ZUO, University of Illinois at Urbana-Champaign, MERCOURI KANATZIDIS, Argonne National Laboratory and Northwestern University — Amid the flurry of activity on $K_{1-x}Fe_{2-y}Se_2$ superconductors, it remains established that the stoichiometric compound $K_2Fe_4Se_5$ is an antiferromagnetic semiconductor. This raises the question of whether subtle $\operatorname{Fe}^{1+/3+}$ doping causes $\operatorname{K}_{1-x}\operatorname{Fe}_{2-y}\operatorname{Se}_2$ to become a bulk superconductor, and if so, is there a structural distinction between superconducting and non-superconducting phases? We have grown $K_{1-x}Fe_{2-y}Se_2$ samples that show superconductivity with $T_C = 31$ K, even when growth conditions are starkly different from those reported in the literature. Here we present high-resolution synchrotron X-ray diffraction measurements, alongside single-crystal x-ray and electron diffraction, to elucidate the phase space in this system. Combined with magnetometry, heat capacity, and transport measurements, our structure-property relations help prescribe how chemical composition and heat treatment induce superconductivity and vacancy ordering in the $K_{1-x}Fe_{2-y}Se_2$ system.

> Daniel Shoemaker Argonne National Laboratory

Date submitted: 11 Nov 2011

Electronic form version 1.4