Magnon contribution to the spin torque and magnetoresistance properties of FeCoB/MgO/FeCoB magnetic tunnel junctions

YUN LI, HSIN-WEI TSENG, Cornell University, Ithaca, NY 14853, JOHN READ, JORDAN KATINE, HGST, San Jose, California, 95135, DANIEL RALPH, ROBERT BUHRMAN, Cornell University, Ithaca, NY 14853 — We have studied the spin-torque excited ferromagnetic resonance (ST-FMR) and the tunneling magnetoresistance (TMR) properties of FeCoB/MgO/FeCoB magnetic tunnel junctions as a function of temperature from 300K to 10K. We find that while the TMR increases by ~ 50% upon cooling to 10 K, the in-plane spin torque and the perpendicular or field-like torque both decrease substantially. The results demonstrate that while magnon-assisted tunneling degrades TMR, it acts to significantly enhance ST in MTJs, in accord with theoretical prediction. Moreover, the bias-dependent structure in both the asymmetry of the in-plane ST and the parallel conductance of the MTJ is more pronounced at low temperature, indicative of this asymmetry being due substantially to the interfacial electronic structure of the electrodes.

Yun Li
Cornell University, Ithaca, NY 14853

Date submitted: 11 Nov 2011