DC SQUID RF magnetometer with 200 MHz bandwidth

VLADIMIR TALANOV, NESCO LETTSMOE, ANTONIO OROZCO, Neocera, LLC, Beltsville, MD 20705, ALFRED CAWTHORNE, Trevecca Nazarene University, Nashville, TN 37210, VALERY BORZENETS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 — Because of periodic flux-to-voltage transfer function, Superconducting QUantum Interference Device (SQUID) magnetometers operate in a closed-loop regime [1], which linearizes the response, and increases the dynamic range and sensitivity. However, a transmission line delay between the SQUID and electronics fundamentally limits the closed-loop bandwidth at 20 MHz [1], although the intrinsic bandwidth of SQUIDs is in gigahertz range. We designed a DC SQUID based RF magnetometer capable of wideband sensing coherent magnetic fields up to 200 MHz. To overcome the closed-loop bandwidth limitation, we utilized a low-frequency flux-modulated closed-loop to simultaneously lock the quasi-static magnetic flux and provide AC bias for the RF flux. The SQUID RF voltage is processed by RF electronics based on a double lock-in technique. This yields a signal proportional to the amplitude and phase of the RF magnetic flux, with more than four decades of a linear response. For YBaCuO SQUID on bi-crystal SrTiO substrate at 77 K we achieved a flux noise density of $4 \mu \Phi_0/\sqrt{\text{Hz}}$ at 190 MHz, which is similar to that measured at kHz frequencies with conventional flux-locked loop. [1] D. Drung, et al., Supercond. Sci. Technol. 19, S235 (2006).

1This work has been supported by NSF-SBIR IIP-0924610.

Vladimir Talanov
Neocera, LLC, Beltsville, MD 20705

Date submitted: 11 Nov 2011

Electronic form version 1.4