Abstract Submitted for the MAR12 Meeting of The American Physical Society

Photoemission measurements of strained VO2¹ JUDE LAVEROCK, ANDREW PRESTON, DAVE NEWBY, KEVIN SMITH, Boston University, SALINPORN KITTIWATANAKUL, JIWEI LU, STUART WOLF, University of Virginia, MATS LEANDERSSON, BALASUBRAMANIAN THIAGARAJAN, MAX-lab, Lund University — The metal-insulator transition of VO_2 has been a textbook example for many years, despite a clear understanding of its microscopic origins proving elusive. Recently, the promise towards novel applications of high-quality thin films, in which the properties of the transition can be tailored by applied strain, has thrust VO_2 back into focus. Here, we report photoemission measurements of strained VO_2 thin films epitaxially grown on $TiO_2(110)$ and $TiO_2(100)$ substrates. The applied strain for these two films lead to moderate and large compressive rutile c-axis strains, respectively. By making use of the incident photon polarization, we observe the changes in polarization anisotropy both across the transition and as a function of applied strain, and demonstrate how we can use this to learn more about the origin of the MIT in VO_2 .

¹BU program supported in part by DoE Grant No. DE-FG02-98ER45680.

> Jude Laverock Boston University

Date submitted: 11 Nov 2011

Electronic form version 1.4