Fano Resonances in Mid-Infrared Spectra of Single-Walled Carbon Nanotubes FRANÇOIS LAPOINTE, ÉTIENNE GAUFRES, ISABELLE TREMBLAY, NATHALIE TANG, Université de Montreal, PATRICK DESJARDINS, Ecole Polytechnique de Montreal, RICHARD MARTEL, Université de Montreal, REGROUPEMENT QUÉBÉCOIS SUR LES MATÉRIAUX DE POINTE (RQMP) TEAM — We show that optical phonon modes in single-walled carbon nanotubes (SWNTs) become observable in mid-infrared (MIR) spectroscopy by the means of Fano resonances. The scattering of a low energy electronic continuum over phonon discrete states yields anti-resonances that are recognizable in the spectra by their characteristic asymmetric line shape. Experimentally, we control the charge carrier density in SWNTs by \(p \) doping with different molecular oxidizers at saturation and compare the spectra of doped and intrinsic samples. The only measurable feature in the intrinsic state is a kink at \(\sim 865 \text{ cm}^{-1} \). Kinks at \(\sim 1600 \) and \(\sim 1250 \text{ cm}^{-1} \) appear upon doping. We find no significant differences between the dopants; hence the bands belong to the SWNTs. Fitting of the band at \(\sim 1600 \text{ cm}^{-1} \) yields good agreement with a phenomenological Fano resonance model. Finally, SWNTs mats are functionalized with bromophenyls, which are known to increase the number of defects. We find that upon \(p \) doping, the Fano resonances’ cross sections of damaged SWNTs increase compared to that of \(p \) doped pristine SWNTs. Hence, we conclude that defects lower the symmetry of the lattice and activate optical phonon modes in MIR spectroscopy.

François Lapointe
Université de Montreal

Date submitted: 11 Nov 2011

Electronic form version 1.4