Symmetric States on the Octonionic Bloch Ball

MATTHEW GRAYDON, University of Waterloo, Perimeter Institute for Theoretical Physics, Institute for Quantum Computing —Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.

1This work was supported in part by the U. S. Office of Naval Research (Grant No. N00014-09-1-0247).

Matthew Graydon
University of Waterloo, Perimeter Institute for Theoretical Physics, Institute for Quantum Computing

Date submitted: 28 Nov 2011

Electronic form version 1.4