Titanium Isopropoxide Precursor Volume Consumption as a Function of Temperature for Titanium Dioxide Thin Films Grown by Atomic Layer Deposition

COSTEL CONSTANTIN, James Madison University

— Atomic layer deposition (ALD) offers tremendous opportunities for controlling material synthesis on an atomic level and for creating nanolayers with unique new functionalities. ALD is a chemical gas phase thin film deposition method based on alternating surface reactions that employs two or more precursors. ALD is often used for growth of high k dielectric constant oxide films. Titanium dioxide material have a k value of 80, and a band gap of \(\sim 3 \) eV, and due to strong oxidizing properties thin films coated on construction materials and glass have fog proof, and self cleaning properties. Our ALD reactor employs liquid Titanium Isopropoxide \([\text{Ti}\{\text{OCH}(\text{CH}_3)_2\}_4]\) as a metal precursor and distilled \(\text{H}_2\text{O}\) as an oxygen source to grow thin films of titanium dioxide \([\text{TiO}_2]\) on silicon \([\text{Si}]\), gallium nitride \([\text{GaN}]\), and Aluminium foil \([\text{Al-foil}]\) substrates. Titanium Isopropoxide exhibit a vapor pressure surge above 40° C and we report the volume precursor consumption as a function of precursor temperature and thin film thickness for ALD grown TiO\(_2\) on Si, GaN, and Al-foil substrates. We will also present dielectric constants of the TiO\(_2\) thin films measured with a variable angle spectroscopic ellipsometer.

\(^1\)DOD-ASSURE/NSF-REU grant # DMR-0851367