Lattice-Nanotomy for Large-Scale Production of Transferrable and Dispersible Graphene-Nanostructures of Controlled Shape and Size1

BALABALAJI PADAVALA, NIHAR MOHANTY, Kansas State University, DAVID MOORE, University of Kansas, ZHIPING XU, Tsinghua University, ASHVIN NAGARAJA, ALFREDO A. RODRIGUEZ, VIKAS BERRY, Kansas State University, DR. MOORE’S TEAM TEAM, DR. XU’S TEAM TEAM — In this talk, we will present a novel graphite-lattice-nanotomy (nanoscale-cutting) process for high throughput production of monodispersed graphene nanostructures (GNs) with controlled shape (square, rectangle, ribbons and triangle), dimensions (sizes at 5 nm resolution with a range of 5–600 nm) and chemical-construct. We demonstrate that this versatile process enables the realization of unprecedented graphene-nanostructures, which exhibit the evolution of semiconductor-characteristics and electrical transport mechanism. Further, we will present in detail the size and shape-dependent electrical and optical properties of these GNs via various microscopic and spectroscopic techniques. This nanotomy process can provide access to virtually-infinite and unprecedented GNs for development of fundamental optical/electrical/structural correlations and novel applications.

1NSF-CAREER, Office of Naval Research and KSU-Startup

Balabalaji Padavala
Kansas State University

Date submitted: 19 Dec 2011
Electronic form version 1.4