Experimental characterization of coherent dynamics in a spin chain

CHANDRASEKAR RAMANATHAN, Dartmouth College, JAMES LEE, Oxford University, PAOLA CAPPELLARO, Massachusetts Institute of Technology, LORENZA VIOLA, Dartmouth College, DAVID CORY, Institute for Quantum Computing and University of Waterloo — We experimentally characterize the coherent room-temperature magnetization dynamics of a spin chain evolving under an effective double-quantum Hamiltonian. Our results indicate that a localized magnetic moment travels down the chain with a group velocity of \(6.04 \pm 0.38 \, \mu \text{m/s}\), corresponding to coherent transport over \(N \approx 26\) spins on the timescale of the experiment. We also characterize the influence of the ends of the chains on the magnetization dynamics. Our results are in excellent agreement with a nearest-neighbor-coupled analytical model that predicts that the dynamics are restricted to a Liouville space that only grows quadratically with the number of spins. This suggests that the long-range couplings present in the experimental system only cause a slow leakage out of the subspace. As the double-quantum Hamiltonian is related to the standard one-dimensional XX Hamiltonian by a similarity transform, our results can be directly extended to XX quantum spin chains, which have been extensively studied in the context of both quantum magnetism and quantum information processing.

Chandrasekhar Ramanathan
Dartmouth College

Date submitted: 11 Nov 2011
Electronic form version 1.4