Abstract Submitted for the MAR12 Meeting of The American Physical Society

Moiré pattern of a single layer MoS_2 grown on $Cu(111)^1$ DUY LE, TALAT S. RAHMAN, University of Central Florida — We present results of first principles calculations of the geometric and electronic structures of a single layer of Molybdenum disulfide (MoS_2) on Cu(111) utilizing the van der Waals density functional [1]. The lowest energy Moiré structure consists of (4×4) MoS_2 on (5×5) Cu(111), in agreement with experimental observation [2]. Examination of the local density of electronic states and charge redistribution shows that the layer is not purely physisorbed on the surface, rather there exists a chemical interaction between it and the Cu surface atoms. Interestingly the MoS_2 film is found to be not appreciably buckled, while the atoms in the top Cu layer gets reorganized and vertically disordered. The sizes of Moiré patterns for a single layer of MoS_2 adsorbed on several other close packed metal surfaces are estimated by minimizing the lattice mismatch between the film and the substrate.

- [1] M. Dion et al, Phys. Rev. Lett. **92**, 246401 (2004)
- [2] D. Kim et al, Langmuir 27, 11650 (2011)

¹Work supported in part by U.S. Department of Energy under grant DE-FG02-07ER15842

Duy Le University of Central Florida

Date submitted: 12 Dec 2011 Electronic form version 1.4