Excitonic Energy Shifts in Isotopically Controlled $I – III – VI_2$ Chalcopyrites: $CuGaS_2$ and $AgGaS_2$. J.S. BHOSALE, H. ALAWADHI, I. MIOTKOWSKI, A.K. RAMDAS, Purdue University, R. LAUCK, M. CARDONA, MPI for Solid State Research — $CuGaS_2$ and $AgGaS_2$ tetrahedrally co-ordinated chalcopyrites are “genealogically related” to $II – VI$ semiconductors like ZnS. We have investigated the shifts in their excitonic signatures by controlling the isotopic mass of the I, III or VI_2 constituent in the crystals grown by physical vapor deposition. The excitonic signatures are observed in wavelength modulated reflectivity employing a high S/N, LED based technique. For example it reveals a 3.9 meV shift for the A exciton in $Ag^{71}GaS_2$ with respect to that of natural $AgGaS_2$; a smaller increase occurs in ZnS. These effects have been related to electron-phonon interaction caused by the zero-point vibrations. Similar effects, but with an opposite sign, have been observed for Cu-isotopes in $CuGaS_2$ as well as in the Cu-monohalides CuCl, CuBr, and CuI; their origin is receiving considerable attention at present though not yet understood. In this context the excitonic temperature dependence will be discussed.

1Work is supported by US National Science Foundation (DMR 0705793)
2J. S. Bhosale, Rev. Sci. Instrum. 82, 093103 (2011)
5Cardona, op. cit